Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Global solar photospheric magnetic maps play a critical role in solar and heliospheric physics research. Routine magnetograph measurements of the field occur only along the Sun–Earth line, leaving the far side of the Sun unobserved. Surface flux transport (SFT) models attempt to mitigate this by modeling the surface evolution of the field. While such models have long been established in the community (with several releasing public full-Sun maps), none are open source. The Open-source Flux Transport (OFT) model seeks to fill this gap by providing an open and user-extensible SFT model that also builds on the knowledge of previous models with updated numerical and data acquisition/assimilation methods along with additional user-defined features. In this first of a series of papers on OFT, we introduce its computational core: the High-performance Flux Transport (HipFT) code (https://github.com/predsci/hipft). HipFT implements advection, diffusion, and data assimilation in a modular design that supports a variety of flow models and options. It can compute multiple realizations in a single run across model parameters to create ensembles of maps for uncertainty quantification and is high-performance through the use of multi-CPU and multi-GPU parallelism. HipFT is designed to enable users to write extensions easily, enhancing its flexibility and adaptability. We describe HipFT’s model features, validations of its numerical methods, performance of its parallel and GPU-accelerated code implementation, analysis/postprocessing options, and example use cases.more » « lessFree, publicly-accessible full text available May 1, 2026
-
The Sun’s corona is its tenuous outer atmosphere of hot plasma, which is difficult to observe. Most models of the corona extrapolate its magnetic field from that measured on the photosphere (the Sun’s optical surface) over a full 27-day solar rotational period, providing a time-stationary approximation. We present a model of the corona that evolves continuously in time, by assimilating photospheric magnetic field observations as they become available. This approach reproduces dynamical features that do not appear in time-stationary models. We used the model to predict coronal structure during the total solar eclipse of 8 April 2024 near the maximum of the solar activity cycle. There is better agreement between the model predictions and eclipse observations in coronal regions located above recently assimilated photospheric data.more » « lessFree, publicly-accessible full text available June 10, 2026
-
Abstract The Wang–Sheeley–Arge (WSA) model has been in use for decades and remains a popular, economical approach to modeling the solar coronal magnetic field and forecasting conditions in the inner heliosphere. Given its usefulness, it is unsurprising that a number of WSA implementations have been developed by various groups with different computational approaches. While the WSA magnetic field model has traditionally been calculated using a spherical harmonic expansion of the solar magnetic field, finite-difference potential field solutions can offer speed and/or accuracy advantages. However, the creation of new versions of WSA requires that we ensure the solutions from these new models are consistent with established versions and that we quantify for the user community to what degree and in what ways they differ. In this paper, we present side-by-side comparisons of WSA models produced using the traditional, spherical harmonic–based implementation developed by Wang, Sheeley, and Arge with WSA models produced using a recently open-sourced finite-difference code from the CORHEL modeling suite called POT3D. We present comparisons of the terminal solar wind speed and magnetic field at the outer boundaries of the models, weighing these against the variation of the WSA model in the presence of small perturbations in the computational procedure, parameters, and inputs. We also compare the footpoints of magnetic field lines traced from the outer boundaries and the locations of open field in the models. We find that the traced field-line footpoints show remarkable agreement, with the greatest differences near the magnetic neutral line and in the polar regions.more » « less
-
Abstract A plethora of coronal models, from empirical to more complex magnetohydrodynamic (MHD) ones, are being used for reconstructing the coronal magnetic field topology and estimating the open magnetic flux. However, no individual solution fully agrees with coronal hole observations and in situ measurements of open flux at 1 au, as there is a strong deficit between the model and observations contributing to the known problem of the missing open flux. In this paper, we investigate the possible origin of the discrepancy between modeled and observed magnetic field topology by assessing the effect on the simulation output by the choice of the input boundary conditions and the simulation setup, including the choice of numerical schemes and the parameter initialization. In the frame of this work, we considered four potential field source surface-based models and one fully MHD model, different types of global magnetic field maps, and model initiation parameters. After assessing the model outputs using a variety of metrics, we conclude that they are highly comparable regardless of the differences set at initiation. When comparing all models to coronal hole boundaries extracted by extreme-ultraviolet filtergrams, we find that they do not compare well. This mismatch between observed and modeled regions of the open field is a candidate contributing to the open flux problem.more » « less
-
Abstract Coronal holes are recognized as the primary sources of heliospheric open magnetic flux (OMF). However, a noticeable gap exists between in situ measured OMF and that derived from remote-sensing observations of the Sun. In this study, we investigate the OMF evolution and its connection to solar structures throughout 2014, with special emphasis on the period from September to October, where a sudden and significant OMF increase was reported. By deriving the OMF evolution at 1 au, modeling it at the source surface, and analyzing solar photospheric data, we provide a comprehensive analysis of the observed phenomenon. First, we establish a strong correlation between the OMF increase and the solar magnetic field derived from a potential-field source-surface model (ccPearson= 0.94). Moreover, we find a good correlation between the OMF and the open flux derived from solar coronal holes (ccPearson= 0.88), although the coronal holes only contain 14%–32% of the Sun’s total open flux. However, we note that while the OMF evolution correlates with coronal hole open flux, there is no correlation with the coronal hole area evolution (ccPearson= 0.0). The temporal increase in OMF correlates with the vanishing remnant magnetic field at the southern pole, caused by poleward flux circulations from the decay of numerous active regions months earlier. Additionally, our analysis suggests a potential link between the OMF enhancement and the concurrent emergence of the largest active region in solar cycle 24. In conclusion, our study provides insights into the strong increase in OMF observed during 2014 September–October.more » « less
-
Abstract We explore the performance of the Alfvén Wave Solar atmosphere Model with near-real-time (NRT) synoptic maps of the photospheric vector magnetic field. These maps, produced by assimilating data from the Helioseismic Magnetic Imager (HMI) on board the Solar Dynamics Observatory, use a different method developed at the National Solar Observatory (NSO) to provide a near contemporaneous source of data to drive numerical models. Here, we apply these NSO-HMI-NRT maps to simulate three full Carrington rotations: 2107.69 (centered on the 2011 March 7 20:12 CME event), 2123.5 (centered on 2012 May 11), and 2219.12 (centered on the 2019 July 2 solar eclipse), which together cover various activity levels for solar cycle 24. We show the simulation results, which reproduce both extreme ultraviolet emission from the low corona while simultaneously matching in situ observations at 1 au as well as quantify the total unsigned open magnetic flux from these maps.more » « less
-
Abstract To simulate solar coronal mass ejections (CMEs) and predict their time of arrival and geomagnetic impact, it is important to accurately model the background solar wind conditions in which CMEs propagate. We use the Alfvén Wave Solar atmosphere Model (AWSoM) within the the Space Weather Modeling Framework to simulate solar maximum conditions during two Carrington rotations and produce solar wind background conditions comparable to the observations. We describe the inner boundary conditions for AWSoM using the ADAPT global magnetic maps and validate the simulated results with EUV observations in the low corona and measured plasma parameters at L1 as well as at the position of the Solar Terrestrial Relations Observatory spacecraft. This work complements our prior AWSoM validation study for solar minimum conditions and shows that during periods of higher magnetic activity, AWSoM can reproduce the solar plasma conditions (using properly adjusted photospheric Poynting flux) suitable for providing proper initial conditions for launching CMEs.more » « less
An official website of the United States government
